TY - GEN
T1 - Learning based automatic face annotation for arbitrary poses and expressions from frontal images only
AU - Asthana, Akshay
AU - Goecke, Roland
AU - Quadrianto, Novi
AU - Gedeon, Tom
PY - 2009
Y1 - 2009
N2 - Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases.
AB - Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases.
UR - http://www.scopus.com/inward/record.url?scp=70450209181&partnerID=8YFLogxK
U2 - 10.1109/CVPRW.2009.5206766
DO - 10.1109/CVPRW.2009.5206766
M3 - Conference contribution
SN - 9781424439935
T3 - 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
SP - 1635
EP - 1642
BT - 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009
PB - IEEE Computer Society
T2 - 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
Y2 - 20 June 2009 through 25 June 2009
ER -