TY - GEN
T1 - Learning community-based preferences via Dirichlet Process mixtures of Gaussian Processes
AU - Abbasnejad, Ehsan
AU - Sanner, Scott
AU - Bonilla, Edwin V.
AU - Poupart, Pascal
PY - 2013
Y1 - 2013
N2 - Bayesian approaches to preference learning using Gaussian Processes (GPs) are attractive due to their ability to explicitly model uncertainty in users' latent utility functions; unfortunately existing techniques have cubic time complexity in the number of users, which renders this approach intractable for collaborative preference learning over a large user base. Exploiting the observation that user populations often decompose into communities of shared preferences, we model user preferences as an infinite Dirichlet Process (DP) mixture of communities and learn (a) the expected number of preference communities represented in the data, (b) a GPbased preference model over items tailored to each community, and (c) the mixture weights representing each user's fraction of community membership. This results in a learning and inference process that scales linearly in the number of users rather than cubicly and additionally provides the ability to analyze individual community preferences and their associated members. We evaluate our approach on a variety of preference data sources including Amazon Mechanical Turk showing that our method is more scalable and as accurate as previous GP-based preference learning work.
AB - Bayesian approaches to preference learning using Gaussian Processes (GPs) are attractive due to their ability to explicitly model uncertainty in users' latent utility functions; unfortunately existing techniques have cubic time complexity in the number of users, which renders this approach intractable for collaborative preference learning over a large user base. Exploiting the observation that user populations often decompose into communities of shared preferences, we model user preferences as an infinite Dirichlet Process (DP) mixture of communities and learn (a) the expected number of preference communities represented in the data, (b) a GPbased preference model over items tailored to each community, and (c) the mixture weights representing each user's fraction of community membership. This results in a learning and inference process that scales linearly in the number of users rather than cubicly and additionally provides the ability to analyze individual community preferences and their associated members. We evaluate our approach on a variety of preference data sources including Amazon Mechanical Turk showing that our method is more scalable and as accurate as previous GP-based preference learning work.
UR - http://www.scopus.com/inward/record.url?scp=84896062028&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1213
EP - 1219
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -