Learning comprehensible theories from structured data

J. W. Lloyd*

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

    6 Citations (Scopus)

    Abstract

    This tutorial discusses some knowledge representation issues in machine learning. The focus is on machine learning applications for which the individuals that are the subject of learning have complex structure. To represent such individuals, a rich knowledge representation language based on higher-order logic is introduced. The logic is also employed to construct comprehensible hypotheses that one might want to learn about the individuals. The tutorial introduces the main ideas of this approach to knowledge representation in a mostly informal way and gives a number of illustrations. The application of the ideas to decision-tree learning is also illustrated with an example.

    Original languageEnglish
    Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    EditorsShahar Mendelson, Alexander J. Smola
    PublisherSpringer Verlag
    Pages203-225
    Number of pages23
    ISBN (Print)9783540005292
    DOIs
    Publication statusPublished - 2003

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume2600
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Fingerprint

    Dive into the research topics of 'Learning comprehensible theories from structured data'. Together they form a unique fingerprint.

    Cite this