Learning Discriminative αβ-Divergences for Positive Definite Matrices

A. Cherian, P. Stanitsas, M. Harandi, V. Morellas, N. Papanikolopoulos

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    11 Citations (Scopus)

    Abstract

    Symmetric positive definite (SPD) matrices are useful for capturing second-order statistics of visual data. To compare two SPD matrices, several measures are available, such as the affine-invariant Riemannian metric, Jeffreys divergence, Jensen-Bregman logdet divergence, etc.; however, their behaviors may be application dependent, raising the need of manual selection to achieve the best possible performance. Further and as a result of their overwhelming complexity for large-scale problems, computing pairwise similarities by clever embedding of SPD matrices is often preferred to direct use of the aforementioned measures. In this paper, we propose a discriminative metric learning framework, Information Divergence and Dictionary Learning (IDDL), that not only learns application specific measures on SPD matrices automatically, but also embeds them as vectors using a learned dictionary. To learn the similarity measures (which could potentially be distinct for every dictionary atom), we use the recently introduced αß-logdet divergence, which is known to unify the measures listed above. We propose a novel IDDL objective, that learns the parameters of the divergence and the dictionary atoms jointly in a discriminative setup and is solved efficiently using Riemannian optimization. We showcase extensive experiments on eight computer vision datasets, demonstrating state-of-the-art performances.

    Original languageEnglish
    Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages4280-4289
    Number of pages10
    ISBN (Electronic)9781538610329
    DOIs
    Publication statusPublished - 22 Dec 2017
    Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
    Duration: 22 Oct 201729 Oct 2017

    Publication series

    NameProceedings of the IEEE International Conference on Computer Vision
    Volume2017-October
    ISSN (Print)1550-5499

    Conference

    Conference16th IEEE International Conference on Computer Vision, ICCV 2017
    Country/TerritoryItaly
    CityVenice
    Period22/10/1729/10/17

    Fingerprint

    Dive into the research topics of 'Learning Discriminative αβ-Divergences for Positive Definite Matrices'. Together they form a unique fingerprint.

    Cite this