Learning from neural control of nonlinear systems in normal form

Tengfei Liu, Cong Wang*, David J. Hill

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    88 Citations (Scopus)

    Abstract

    A deterministic learning theory was recently proposed which states that an appropriately designed adaptive neural controller can learn the system internal dynamics while attempting to control a class of simple nonlinear systems. In this paper, we investigate deterministic learning from adaptive neural control (ANC) of a class of nonlinear systems in normal form with unknown affine terms. The existence of the unknown affine terms makes it difficult to achieve learning by using previous methods. To overcome the difficulties, firstly, an extension of a recent result is presented on stability analysis of linear time-varying (LTV) systems. Then, with a state transformation, the closed-loop control system is transformed into a LTV form for which exponential stability can be guaranteed when a partial persistent excitation (PE) condition is satisfied. Accurate approximation of the closed-loop control system dynamics is achieved in a local region along a recurrent orbit of closed-loop signals. Consequently, learning of control system dynamics (i.e. closed-loop identification) from adaptive neural control of nonlinear systems with unknown affine terms is implemented.

    Original languageEnglish
    Pages (from-to)633-638
    Number of pages6
    JournalSystems and Control Letters
    Volume58
    Issue number9
    DOIs
    Publication statusPublished - Sept 2009

    Fingerprint

    Dive into the research topics of 'Learning from neural control of nonlinear systems in normal form'. Together they form a unique fingerprint.

    Cite this