Learning object material categories via pairwise discriminant analysis

Zhouyu Fu*, Antonio Robles-Kelly

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    6 Citations (Scopus)

    Abstract

    In this paper, we investigate linear discriminant analysis (LDA) methods for multiclass classification problems in hyperspectral imaging. We note that LDA does not consider pairwise relations between different classes, it rather assumes equal within and between-class scatter matrices. As a result, we present a pairwise discriminant analysis algorithm for learning class categories. Our pairwise linear discriminant analysis measures the separability of two classes making use of the class centroids and variances. Our approach is based upon a novel cost function with unitary constraints based on the aggregation of pairwise costs for binary classes. We view the minimisation of this cost function as an unconstrained optimisation problem over a Grassmann manifold and solve using a projected gradient method. Our approach does not require matrix inversion operations and, therefore, does not suffer of stability problems for small training sets. We demonstrate the utility of our algorithm for purposes of learning material catergories in hyperspectral images.

    Original languageEnglish
    Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
    DOIs
    Publication statusPublished - 2007
    Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
    Duration: 17 Jun 200722 Jun 2007

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
    Country/TerritoryUnited States
    CityMinneapolis, MN
    Period17/06/0722/06/07

    Fingerprint

    Dive into the research topics of 'Learning object material categories via pairwise discriminant analysis'. Together they form a unique fingerprint.

    Cite this