Abstract
We present an intuitive scheme for lossy color-image compression: Use the color information from a few representative pixels to learn a model which predicts color on the rest of the pixels. Now, storing the representative pixels and the image in grayscale suffice to recover the original image. A similar scheme is also applicable for compressing videos, where a single model can be used to predict color on many consecutive frames, leading to better compression. Existing algorithms for colorization - the process of adding color to a grayscale image or video sequence - are tedious, and require intensive human-intervention. We bypass these limitations by using a graph-based inductive semi-supervised learning module for colorization, and a simple active learning strategy to choose the representative pixels. Experiments on a wide variety of images and video sequences demonstrate the efficacy of our algorithm.
Original language | English |
---|---|
Pages | 161-168 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 2007 |
Event | 24th International Conference on Machine Learning, ICML 2007 - Corvalis, OR, United States Duration: 20 Jun 2007 → 24 Jun 2007 |
Conference
Conference | 24th International Conference on Machine Learning, ICML 2007 |
---|---|
Country/Territory | United States |
City | Corvalis, OR |
Period | 20/06/07 → 24/06/07 |