Learning to structure an image with few colors

    Research output: Contribution to journalConference articlepeer-review

    18 Citations (Scopus)

    Abstract

    Color and structure are the two pillars that construct an image. Usually, the structure is well expressed through a rich spectrum of colors, allowing objects in an image to be recognized by neural networks. However, under extreme limitations of color space, the structure tends to vanish, and thus a neural network might fail to understand the image. Interested in exploring this interplay between color and structure, we study the scientific problem of identifying and preserving the most informative image structures while constraining the color space to just a few bits, such that the resulting image can be recognized with possibly high accuracy. To this end, we propose a color quantization network, ColorCNN, which learns to structure the images from the classification loss in an end-To-end manner. Given a color space size, ColorCNN quantizes colors in the original image by generating a color index map and an RGB color palette. Then, this color-quantized image is fed to a pre-Trained task network to evaluate its performance. In our experiment, with only a 1-bit color space (i.e., two colors), the proposed network achieves 82.1% top-1 accuracy on the CIFAR10 dataset, outperforming traditional color quantization methods by a large margin. For applications, when encoded with PNG, the proposed color quantization shows superiority over other image compression methods in the extremely low bit-rate regime. The code is available at https://github.com/hou-yz/color-distillation.

    Original languageEnglish
    Article number9157773
    Pages (from-to)10113-10122
    Number of pages10
    JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    DOIs
    Publication statusPublished - 2020
    Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
    Duration: 14 Jun 202019 Jun 2020

    Fingerprint

    Dive into the research topics of 'Learning to structure an image with few colors'. Together they form a unique fingerprint.

    Cite this