Abstract
Peroxisomal shape, distribution, motility, and interactions with cytoskeletal elements were examined during interphase in living leek (Allium porrum L.) epidermal cells transiently transformed with a construct encoding the green fluorescent protein bearing a carboxy-terminal type 1 peroxisomal targeting signal. Confocal laser scanning microscopy and time-course analysis revealed that labeled peroxisomes were either spherical or rod-shaped and possessed several types of motility including random oscillations, slow and fast directional and bidirectional movements, and stop-and-go movements. Co-localization studies indicated that most peroxisomes were in close association with actin filaments, while treatment of cells with the actin-disrupting drug cytochalasin D blocked all types of peroxisomal movements. In contrast, the overall spatial organization of peroxisomes and the microtubule cytoskeleton were different, and the microtubule-destabilizing agent oryzalin had no obvious effect on peroxisomal motility. These data indicate that the peroxisome in plant cells is a highly dynamic compartment that is dependent upon the actin cytoskeleton, not microtubules, for its subcellular distribution and movements.
Original language | English |
---|---|
Pages (from-to) | 430-441 |
Number of pages | 12 |
Journal | Canadian Journal of Botany |
Volume | 80 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2002 |
Externally published | Yes |