LIGO detector characterization in the second and third observing runs

D. Davis*, J. S. Areeda, B. K. Berger, R. Bruntz, A. Effler, R. C. Essick, R. P. Fisher, P. Godwin, E. Goetz, A. F. Helmling-Cornell, B. Hughey, E. Katsavounidis, A. P. Lundgren, D. M. Macleod, Z. Márka, T. J. Massinger, A. Matas, J. McIver, G. Mo, K. MogushiP. Nguyen, L. K. Nuttall, R. M.S. Schofield, D. H. Shoemaker, S. Soni, A. L. Stuver, A. L. Urban, G. Valdes, M. Walker, R. Abbott, C. Adams, R. X. Adhikari, A. Ananyeva, S. Appert, K. Arai, Y. Asali, S. M. Aston, C. Austin, A. M. Baer, M. Ball, S. W. Ballmer, S. Banagiri, D. Barker, C. Barschaw, L. Barsotti, J. Bartlett, J. Betzwieser, R. Beda, D. Bhattacharjee, J. Bidler, G. Billingsley, S. Biscans, C. D. Blair, R. M. Blair, N. Bode, P. Booker, R. Bork, A. Bramley, A. F. Brooks, D. D. Brown, A. Buikema, C. Cahillane, T. A. Callister, G. Caneva Santoro, K. C. Cannon, J. Carlin, K. Chandra, X. Chen, N. Christensen, A. A. Ciobanu, F. Clara, C. M. Compton, S. J. Cooper, K. R. Corley, M. W. Coughlin, S. T. Countryman, P. B. Covas, D. C. Coyne, S. G. Crowder, T. Dal Canton, B. Danila, L. E.H. Datrier, G. S. Davies, T. Dent, N. A. Didio, C. Di Fronzo, K. L. Dooley, J. C. Driggers, P. Dupej, S. E. Dwyer, T. Etzel, M. Evans, T. M. Evans, S. Fairhurst, J. Feicht, A. Fernandez-Galiana, R. Frey, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, B. U. Gadre, J. A. Giaime, K. D. Giardina, G. González, S. Gras, C. Gray, R. Gray, A. C. Green, A. Gupta, E. K. Gustafson, R. Gustafson, J. Hanks, J. Hanson, T. Hardwick, I. W. Harry, R. K. Hasskew, M. C. Heintze, J. Heinzel, N. A. Holland, I. J. Hollows, C. G. Hoy, S. Hughey, S. P. Jadhav, K. Janssens, G. Johns, J. D. Jones, S. Kandhasamy, S. Karki, M. Kasprzack, K. Kawabe, D. Keitel, N. Kijbunchoo, Y. M. Kim, P. J. King, J. S. Kissel, S. Kulkarni, Rahul Kumar, M. Landry, B. B. Lane, B. Lantz, M. Laxen, Y. K. Lecoeuche, J. Leviton, J. Liu, M. Lormand, R. Macas, A. Macedo, M. MacInnis, V. Mandic, G. L. Mansell, S. Márka, B. Martinez, K. Martinovic, D. V. Martynov, K. Mason, F. Matichard, N. Mavalvala, R. McCarthy, D. E. McClelland, S. McCormick, L. McCuller, C. McIsaac, T. McRae, G. Mendell, K. Merfeld, E. L. Merilh, P. M. Meyers, F. Meylahn, I. Michaloliakos, H. Middleton, J. C. Mills, T. Mistry, R. Mittleman, G. Moreno, C. M. Mow-Lowry, S. Mozzon, L. Mueller, N. Mukund, A. Mullavey, J. Muth, T. J.N. Nelson, A. Neunzert, S. Nichols, E. Nitoglia, J. Oberling, J. J. Oh, S. H. Oh, Richard J. Oram, R. G. Ormiston, N. Ormsby, C. Osthelder, D. J. Ottaway, H. Overmier, A. Pai, J. R. Palamos, F. Pannarale, W. Parker, O. Patane, M. Patel, E. Payne, A. Pele, R. Penhorwood, C. J. Perez, K. S. Phukon, M. Pillas, M. Pirello, H. Radkins, K. E. Ramirez, J. W. Richardson, K. Riles, K. Rink, N. A. Robertson, J. G. Rollins, C. L. Romel, J. H. Romie, M. P. Ross, K. Ryan, T. Sadecki, M. Sakellariadou, E. J. Sanchez, L. E. Sanchez, L. Sandles, T. R. Saravanan, R. L. Savage, D. Schaetzl, R. Schnabel, E. Schwartz, D. Sellers, T. Shaffer, D. Sigg, A. M. Sintes, B. J.J. Slagmolen, J. R. Smith, K. Soni, B. Sorazu, A. P. Spencer, K. A. Strain, D. Strom, L. Sun, M. J. Szczepanczyk, J. Tasson, R. Tenorio, M. Thomas, P. Thomas, K. A. Thorne, K. Toland, C. I. Torrie, A. Tran, G. Traylor, M. Trevor, M. Tse, G. Vajente, N. van Remortel, D. C. Vander-Hyde, A. Vargas, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, A. D. Viets, V. Villa-Ortega, T. Vo, C. Vorvick, M. Wade, G. S. Wallace, R. L. Ward, J. Warner, B. Weaver, A. J. Weinstein, R. Weiss, K. Wette, D. D. White, L. V. White, C. Whittle, A. R. Williamson, B. Willke, C. C. Wipf, L. Xiao, R. Xu, H. Yamamoto, Hang Yu, Haocun Yu, L. Zhang, Y. Zheng, M. E. Zucker, J. Zweizig

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    179 Citations (Scopus)

    Abstract

    The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these datasets in LIGO–Virgo Collaboration analyses of gravitational-waves from both transient and persistent sources and include details on the provenance of these datasets in order to support analyses of LIGO data by the broader community. Finally, we explain anticipated changes in the role of detector characterization and current efforts to prepare for the high rate of gravitational-wave alerts and events in future observing runs.

    Original languageEnglish
    Article number135014
    JournalClassical and Quantum Gravity
    Volume38
    Issue number13
    DOIs
    Publication statusPublished - Jul 2021

    Fingerprint

    Dive into the research topics of 'LIGO detector characterization in the second and third observing runs'. Together they form a unique fingerprint.

    Cite this