TY - JOUR
T1 - Limit experiments of GARCH
AU - Buchmann, Boris
AU - Müller, Gernot
PY - 2012/2
Y1 - 2012/2
N2 - GARCH is one of the most prominent nonlinear time series models, both widely applied and thoroughly studied. Recently, it has been shown that the COGARCH model (which was introduced a few years ago by Klüppelberg, Lindner and Maller) and Nelson's diffusion limit are the only functional continuous-time limits of GARCH in distribution. In contrast to Nelson's diffusion limit, COGARCH reproduces most of the stylized facts of financial time series. Since it has been proven that Nelson's diffusion is not asymptotically equivalent to GARCH in deficiency, in the present paper, we investigate the relation between GARCH and COGARCH in Le Cam's framework of statistical equivalence. We show that GARCH converges generically to COGARCH, even in deficiency, provided that the volatility processes are observed. Hence, from a theoretical point of view, COGARCH can indeed be considered as a continuous-time equivalent to GARCH. Otherwise, when the observations are incomplete, GARCH still has a limiting experiment, which we call MCOGARCH, which is not equivalent, but nevertheless quite similar, to COGARCH. In the COGARCH model, the jump times can be more random than for the MCOGARCH, a fact practitioners may see as an advantage of COGARCH.
AB - GARCH is one of the most prominent nonlinear time series models, both widely applied and thoroughly studied. Recently, it has been shown that the COGARCH model (which was introduced a few years ago by Klüppelberg, Lindner and Maller) and Nelson's diffusion limit are the only functional continuous-time limits of GARCH in distribution. In contrast to Nelson's diffusion limit, COGARCH reproduces most of the stylized facts of financial time series. Since it has been proven that Nelson's diffusion is not asymptotically equivalent to GARCH in deficiency, in the present paper, we investigate the relation between GARCH and COGARCH in Le Cam's framework of statistical equivalence. We show that GARCH converges generically to COGARCH, even in deficiency, provided that the volatility processes are observed. Hence, from a theoretical point of view, COGARCH can indeed be considered as a continuous-time equivalent to GARCH. Otherwise, when the observations are incomplete, GARCH still has a limiting experiment, which we call MCOGARCH, which is not equivalent, but nevertheless quite similar, to COGARCH. In the COGARCH model, the jump times can be more random than for the MCOGARCH, a fact practitioners may see as an advantage of COGARCH.
KW - COGARCH
KW - Le Cam's deficiency distance
KW - Random thinning
KW - Statistical equivalence
KW - Time series
UR - http://www.scopus.com/inward/record.url?scp=84856614267&partnerID=8YFLogxK
U2 - 10.3150/10-BEJ328
DO - 10.3150/10-BEJ328
M3 - Article
SN - 1350-7265
VL - 18
SP - 64
EP - 99
JO - Bernoulli
JF - Bernoulli
IS - 1
ER -