TY - JOUR
T1 - Lipid-Based Inhibitors Act Directly on GlyT2
AU - Schumann-Gillett, Alexandra
AU - O'Mara, Megan L.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2019/3/20
Y1 - 2019/3/20
N2 - The endogenous lipids N-arachidonylglycine and oleoyl-l-carnitine are potential therapeutic leads in the treatment of chronic pain through their inhibition of the glycine transporter GlyT2. However, their mechanism of action is unknown. It has been hypothesized that these "bioactive" lipids either inhibit GlyT2 indirectly, by significantly perturbing the biophysical properties of the membrane, or directly, by binding directly to the transporter (either from a membrane-exposed or solvent-exposed binding site). Here, we used molecular dynamics simulations to study the effects of the lipids anandamide, N-arachidonylglycine, and oleoyl-l-carnitine on (a) the biophysical properties of the bilayer and (b) direct binding interactions with GlyT2. During the simulations, the biophysical properties of the bilayer itself, for example, the area per lipid, bilayer thickness, and order parameters, were not significantly altered by the presence or type of bioactive lipid, regardless of the presence of GlyT2. Our work, together with previous computational and experimental data, suggests that these acyl-inhibitors of GlyT2 inhibit the transporter by directly binding to it. However, these bioactive lipids bound to various parts of GlyT2 and did not prefer a single binding site during 4.5 μs of simulation. We postulate that the binding site is located at the solvent-exposed regions of GlyT2. Understanding the mechanism of action of these and related bioactive lipids is essential in effectively developing high-affinity GlyT2 inhibitors for the treatment of pain.
AB - The endogenous lipids N-arachidonylglycine and oleoyl-l-carnitine are potential therapeutic leads in the treatment of chronic pain through their inhibition of the glycine transporter GlyT2. However, their mechanism of action is unknown. It has been hypothesized that these "bioactive" lipids either inhibit GlyT2 indirectly, by significantly perturbing the biophysical properties of the membrane, or directly, by binding directly to the transporter (either from a membrane-exposed or solvent-exposed binding site). Here, we used molecular dynamics simulations to study the effects of the lipids anandamide, N-arachidonylglycine, and oleoyl-l-carnitine on (a) the biophysical properties of the bilayer and (b) direct binding interactions with GlyT2. During the simulations, the biophysical properties of the bilayer itself, for example, the area per lipid, bilayer thickness, and order parameters, were not significantly altered by the presence or type of bioactive lipid, regardless of the presence of GlyT2. Our work, together with previous computational and experimental data, suggests that these acyl-inhibitors of GlyT2 inhibit the transporter by directly binding to it. However, these bioactive lipids bound to various parts of GlyT2 and did not prefer a single binding site during 4.5 μs of simulation. We postulate that the binding site is located at the solvent-exposed regions of GlyT2. Understanding the mechanism of action of these and related bioactive lipids is essential in effectively developing high-affinity GlyT2 inhibitors for the treatment of pain.
KW - Anandamide
KW - GlyT2
KW - N-arachidonylglycine
KW - lipid inhibitor
KW - molecular dynamics
KW - oleoyl- l -carnitine
KW - symporter
UR - http://www.scopus.com/inward/record.url?scp=85058895851&partnerID=8YFLogxK
U2 - 10.1021/acschemneuro.8b00586
DO - 10.1021/acschemneuro.8b00586
M3 - Article
SN - 1948-7193
VL - 10
SP - 1668
EP - 1678
JO - ACS Chemical Neuroscience
JF - ACS Chemical Neuroscience
IS - 3
ER -