TY - JOUR
T1 - Lithium abundances of halo dwarfs based on excitation temperature I. Local thermodynamic equilibrium
AU - Hosford, A.
AU - Ryan, S. G.
AU - Pérez, A. E.García
AU - Norris, J. E.
AU - Olive, K. A.
PY - 2009/1
Y1 - 2009/1
N2 - Context. The discovery of the Spite plateau in the abundances of 7Li for metal-poor stars led to the determination of an observationally deduced primordial lithium abundance. However, after the success of the Wilkinson Microwave Anisotropy Probe (WMAP) in determining the baryon density, ΩBh2, there was a discrepancy between observationally determined and theoretically determined abundances in the case of 7Li. One of the most important uncertain factors in the calculation of the stellar 7Li abundance is the effective temperature, T eff. Aims. We use sixteen metal-poor halo dwarfs to calculate new Teff values using the excitation energy method. With this temperature scale we then calculate new Li abundances for this group of stars in an attempt to resolve the 7Li discrepancy. Methods. Using high signal-to-noise (S/N ≈ 100) spectra of 16 metal-poor halo dwarfs, obtained with the UCLES spectrograph on the AAT, measurements of equivalent widths from a set of unblended Fe I lines are made. These equivalent widths are then used to calculate new Teff values with the use of the single line radiative transfer program WIDTH6, where we have constrained the gravity using either theoretical isochrones or the Hipparcos parallax, rather than the ionization balance. The lithium abundances of the stars are calculated with these temperatures. Results. The physical parameters are derived for the 16 programme stars, and two standards. These include Teff log g, [Fe/H], microturbulence and 7Li abundances. A comparison between the temperature scale of this work and those adopted by others has been undertaken. We find good consistency with the temperatures derived from the Ha line by Asplund et al. (2006, ApJ, 644, 229), but not with the hotter scale of Meléndez & Ramírez (2004, ApJ, 615, L33). We also present results of the investigation into whether any trends between 7Li and metallicity or temperature are present in these metal-poor stars.
AB - Context. The discovery of the Spite plateau in the abundances of 7Li for metal-poor stars led to the determination of an observationally deduced primordial lithium abundance. However, after the success of the Wilkinson Microwave Anisotropy Probe (WMAP) in determining the baryon density, ΩBh2, there was a discrepancy between observationally determined and theoretically determined abundances in the case of 7Li. One of the most important uncertain factors in the calculation of the stellar 7Li abundance is the effective temperature, T eff. Aims. We use sixteen metal-poor halo dwarfs to calculate new Teff values using the excitation energy method. With this temperature scale we then calculate new Li abundances for this group of stars in an attempt to resolve the 7Li discrepancy. Methods. Using high signal-to-noise (S/N ≈ 100) spectra of 16 metal-poor halo dwarfs, obtained with the UCLES spectrograph on the AAT, measurements of equivalent widths from a set of unblended Fe I lines are made. These equivalent widths are then used to calculate new Teff values with the use of the single line radiative transfer program WIDTH6, where we have constrained the gravity using either theoretical isochrones or the Hipparcos parallax, rather than the ionization balance. The lithium abundances of the stars are calculated with these temperatures. Results. The physical parameters are derived for the 16 programme stars, and two standards. These include Teff log g, [Fe/H], microturbulence and 7Li abundances. A comparison between the temperature scale of this work and those adopted by others has been undertaken. We find good consistency with the temperatures derived from the Ha line by Asplund et al. (2006, ApJ, 644, 229), but not with the hotter scale of Meléndez & Ramírez (2004, ApJ, 615, L33). We also present results of the investigation into whether any trends between 7Li and metallicity or temperature are present in these metal-poor stars.
KW - Cosmology: early universe
KW - Galaxy: halo
KW - Stars: abundances
KW - nuclear reactions, nucleosynthesis, abundances
UR - http://www.scopus.com/inward/record.url?scp=59049096646&partnerID=8YFLogxK
U2 - 10.1051/0004-6361:200810240
DO - 10.1051/0004-6361:200810240
M3 - Article
SN - 0004-6361
VL - 493
SP - 601
EP - 612
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
IS - 2
ER -