Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells

James Bullock, Peiting Zheng, Quentin Jeangros, Mahmut Tosun, Mark Hettick, Carolin M. Sutter-Fella, Yimao Wan, Thomas Allen, Di Yan, Daniel Macdonald, Stefaan De Wolf, Aïcha Hessler-Wyser, Andres Cuevas*, Ali Javey

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    147 Citations (Scopus)

    Abstract

    Low-resistance contact to lightly doped n-type crystalline silicon (c-Si) has long been recognized as technologically challenging due to the pervasive Fermi-level pinning effect. This has hindered the development of certain devices such as n-type c-Si solar cells made with partial rear contacts (PRC) directly to the lowly doped c-Si wafer. Here, a simple and robust process is demonstrated for achieving mΩ cm2 scale contact resistivities on lightly doped n-type c-Si via a lithium fluoride/aluminum contact. The realization of this low-resistance contact enables the fabrication of a first-of-its-kind high-efficiency n-type PRC solar cell. The electron contact of this cell is made to less than 1% of the rear surface area, reducing the impact of contact recombination and optical losses, permitting a power conversion efficiency of greater than 20% in the initial proof-of-concept stage. The implementation of the LiFx/Al contact mitigates the need for the costly high-temperature phosphorus diffusion, typically implemented in such a cell design to nullify the issue of Fermi level pinning at the electron contact. The timing of this demonstration is significant, given the ongoing transition from p-type to n-type c-Si solar cell architectures, together with the increased adoption of advanced PRC device structures within the c-Si photovoltaic industry.

    Original languageEnglish
    Article number1600241
    JournalAdvanced Energy Materials
    Volume6
    Issue number14
    DOIs
    Publication statusPublished - 20 Jul 2016

    Fingerprint

    Dive into the research topics of 'Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells'. Together they form a unique fingerprint.

    Cite this