Lizard distribution patterns in the Tumut fragmentation "Natural Experiment" in south-eastern Australia

Joern Fischer*, David B. Lindenmayer, Simon Barry, Emily Flowers

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    46 Citations (Scopus)

    Abstract

    Lizard distribution patterns were examined in a fragmented plantation landscape in south-eastern Australia. Regression modelling was used to relate ecological variables to (1) lizard species richness, (2) lizard species composition, and (3) the presence or abundance of selected lizard species. Ecological variables covered four broad domains that affect animals: climate, space, shelter and food availability. Lizard species richness was highest at mid-elevation sites, and at locations with a large amount of native forest within 1000 m. A major change in lizard species composition was associated with elevation, the proportion of native forest within 1000 m of a site, and the abundance of springtails. The change in species composition coincided with a range of individualistic responses to environmental conditions by different lizard species. For example, with respect to shelter availability, old logs were related to the garden skink Lampropholis guichenoti, shrubs were related to the delicate skink L. delicata, and rocks were related to the red-throated skink Bassiana platynota. The garden skink was most abundant at low elevations, the delicate skink was most likely to occur at intermediate elevations, and the mountain log skink Pseudemoia entrecasteauxii was most likely to occur at high elevations. The garden skink was most abundant in areas surrounded by little native forest, whereas Maccoy's skink Nannoscincus maccoyi and Coventry's skink Niveoscincus coventryi were more abundant or likely to occur in areas whose context was dominated by native forest. Because animal species may respond individualistically to gradients of climate, space, shelter and food availability, continuum theory (as developed for plant ecology) may be a useful complement to fragmentation theory to explain distribution patterns. To maintain lizard diversity in the study area, it will be important to maintain maximum habitat heterogeneity at the landscape and microhabitat scales. For species otherwise threatened by plantation development, large, fairly undisturbed areas of eucalypt forest will be particularly important.

    Original languageEnglish
    Pages (from-to)301-315
    Number of pages15
    JournalBiological Conservation
    Volume123
    Issue number3
    DOIs
    Publication statusPublished - Jun 2005

    Fingerprint

    Dive into the research topics of 'Lizard distribution patterns in the Tumut fragmentation "Natural Experiment" in south-eastern Australia'. Together they form a unique fingerprint.

    Cite this