TY - GEN
T1 - LLDif
T2 - 27th International Conference on Pattern Recognition, ICPR 2024
AU - Wang, Zhifeng
AU - Zhang, Kaihao
AU - Sankaranarayana, Ramesh
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025
Y1 - 2025
N2 - This paper introduces LLDif, a novel diffusion-based facial expression recognition (FER) framework tailored for extremely low-light (LL) environments. Images captured under such conditions often suffer from low brightness and significantly reduced contrast, presenting challenges to conventional methods. These challenges include poor image quality that can significantly reduce the accuracy of emotion recognition. LLDif addresses these issues with a novel two-stage training process that combines a Label-aware CLIP (LA-CLIP), an embedding prior network (PNET), and a transformer-based network adept at handling the noise of low-light images. The first stage involves LA-CLIP generating a joint embedding prior distribution (EPD) to guide the LLformer in label recovery. In the second stage, the diffusion model (DM) refines the EPD inference, ultilising the compactness of EPD for precise predictions. Experimental evaluations on various LL-FER datasets have shown that LLDif achieves competitive performance, underscoring its potential to enhance FER applications in challenging lighting conditions.
AB - This paper introduces LLDif, a novel diffusion-based facial expression recognition (FER) framework tailored for extremely low-light (LL) environments. Images captured under such conditions often suffer from low brightness and significantly reduced contrast, presenting challenges to conventional methods. These challenges include poor image quality that can significantly reduce the accuracy of emotion recognition. LLDif addresses these issues with a novel two-stage training process that combines a Label-aware CLIP (LA-CLIP), an embedding prior network (PNET), and a transformer-based network adept at handling the noise of low-light images. The first stage involves LA-CLIP generating a joint embedding prior distribution (EPD) to guide the LLformer in label recovery. In the second stage, the diffusion model (DM) refines the EPD inference, ultilising the compactness of EPD for precise predictions. Experimental evaluations on various LL-FER datasets have shown that LLDif achieves competitive performance, underscoring its potential to enhance FER applications in challenging lighting conditions.
KW - diffusion model
KW - emotion recognition
KW - Low-Light
UR - http://www.scopus.com/inward/record.url?scp=85211764053&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-78201-5_25
DO - 10.1007/978-3-031-78201-5_25
M3 - Conference contribution
AN - SCOPUS:85211764053
SN - 9783031782008
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 386
EP - 401
BT - Pattern Recognition - 27th International Conference, ICPR 2024, Proceedings
A2 - Antonacopoulos, Apostolos
A2 - Chaudhuri, Subhasis
A2 - Chellappa, Rama
A2 - Liu, Cheng-Lin
A2 - Bhattacharya, Saumik
A2 - Pal, Umapada
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 1 December 2024 through 5 December 2024
ER -