Local Background Enclosure for RGB-D Salient Object Detection

David Feng, Nick Barnes, Shaodi You, Chris McCarthy

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    219 Citations (Scopus)

    Abstract

    Recent work in salient object detection has considered the incorporation of depth cues from RGB-D images. In most cases, depth contrast is used as the main feature. However, areas of high contrast in background regions cause false positives for such methods, as the background frequently contains regions that are highly variable in depth. Here, we propose a novel RGB-D saliency feature. Local Background Enclosure (LBE) captures the spread of angular directions which are background with respect to the candidate region and the object that it is part of. We show that our feature improves over state-of-the-art RGB-D saliency approaches as well as RGB methods on the RGBD1000 and NJUDS2000 datasets.

    Original languageEnglish
    Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    PublisherIEEE Computer Society
    Pages2343-2350
    Number of pages8
    ISBN (Electronic)9781467388504
    DOIs
    Publication statusPublished - 9 Dec 2016
    Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
    Duration: 26 Jun 20161 Jul 2016

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2016-December
    ISSN (Print)1063-6919

    Conference

    Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    Country/TerritoryUnited States
    CityLas Vegas
    Period26/06/161/07/16

    Fingerprint

    Dive into the research topics of 'Local Background Enclosure for RGB-D Salient Object Detection'. Together they form a unique fingerprint.

    Cite this