Abstract
The nonlinear responses of species to environmental variability can play an important role in the maintenance of ecological diversity. Nonetheless, many models use parametric nonlinear terms which pre-determine the ecological conclusions. Motivated by this concern, we study the estimate of the second derivative (curvature) of the link function in a functional single index model. Since the coefficient function and the link function are both unknown, the estimate is expressed as a nested optimization. We first estimate the coefficient function by minimizing squared error where the link function is estimated with a Nadaraya-Watson estimator for each candidate coefficient function. The first and second derivatives of the link function are then estimated via local-quadratic regression using the estimated coefficient function. In this paper, we derive a convergence rate for the curvature of the nonlinear response. In addition, we prove that the argument of the linear predictor can be estimated root-n consistently. However, practical implementation of the method requires solving a nonlinear optimization problem, and our results show that the estimates of the link function and the coefficient function are quite sensitive to the choices of starting values.
Original language | English |
---|---|
Pages (from-to) | 1307-1338 |
Number of pages | 32 |
Journal | Scandinavian Journal of Statistics |
Volume | 47 |
Issue number | 4 |
DOIs | |
Publication status | Published - Dec 2020 |