Abstract
Pair distribution function analysis of neutron-scattering data and of ab initio molecular dynamics results have been employed to study short-range structural correlations and their temperature dependence in a heavily disordered dielectric material SrxBa1-xNb2O6(x=0.35,0.5, and 0.61). Intrinsic disorder caused by a partial occupation of the cationic sites by differently sized Sr and Ba atoms and their vacancies introduces important local strains to the structure and directly influences the Nb-O6 octahedra tilting. The resulting complex system of tilts is found to be both temperature and Sr-doping sensitive with the biggest tilt magnitudes reached at low temperatures and high strontium contents, where ferroelectric relaxor behavior appears. We find evidence for two Nb-O6 subsystems with different variations of niobium-oxygen bond lengths, distinct dynamics, and disparate levels of deviation from macroscopic polarization direction. These findings establish a detailed picture of the local structure of SrxBa1-xNb2O6 and provide a deeper insight into the origins of the materials dielectric properties.
Original language | English |
---|---|
Article number | 104102 |
Journal | Physical Review B |
Volume | 99 |
Issue number | 10 |
DOIs | |
Publication status | Published - 5 Mar 2019 |