TY - JOUR
T1 - Long Non-coding RNAs Coordinate Developmental Transitions and Other Key Biological Processes in Grapevine
AU - Bhatia, Garima
AU - Sharma, Shailesh
AU - Upadhyay, Santosh Kumar
AU - Singh, Kashmir
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Long non-coding RNAs (lncRNAs) are transcripts >200 nucleotides that have prominently surfaced as dynamic regulatory molecules. Using computational approaches, we identified and characterized 56,441 lncRNAs in grapevine (Vitis vinifera) by harnessing RNA-seq data from 10 developmental stages of leaf, inflorescence, and berry tissues. We conducted differential expression analysis and determined tissue- and developmental stage-specificity of lncRNAs in grapevine, which indicated their spatiotemporal regulation. Functional annotation using co-expression analysis revealed their involvement in regulation of developmental transitions in sync with transcription factors (TFs). Further, pathway enrichment analysis revealed lncRNAs associated with biosynthetic and secondary metabolic pathways. Additionally, we identified 115, 560, and 133 lncRNAs as putative miRNA precursors, targets, and endogenous target mimics, respectively, which provided an insight into the interplay of regulatory RNAs. We also explored lncRNA-mediated regulation of extra-chromosomal genes–i.e., mitochondrial and chloroplast coding sequences and observed their involvement in key biological processes like ‘photosynthesis’ and ‘oxidative phosphorylation’. In brief, these transcripts coordinate important biological functions via interactions with both coding and non-coding RNAs as well as TFs in grapevine. Our study would facilitate future experiments in unraveling regulatory mechanisms of development in this fruit crop of economic importance.
AB - Long non-coding RNAs (lncRNAs) are transcripts >200 nucleotides that have prominently surfaced as dynamic regulatory molecules. Using computational approaches, we identified and characterized 56,441 lncRNAs in grapevine (Vitis vinifera) by harnessing RNA-seq data from 10 developmental stages of leaf, inflorescence, and berry tissues. We conducted differential expression analysis and determined tissue- and developmental stage-specificity of lncRNAs in grapevine, which indicated their spatiotemporal regulation. Functional annotation using co-expression analysis revealed their involvement in regulation of developmental transitions in sync with transcription factors (TFs). Further, pathway enrichment analysis revealed lncRNAs associated with biosynthetic and secondary metabolic pathways. Additionally, we identified 115, 560, and 133 lncRNAs as putative miRNA precursors, targets, and endogenous target mimics, respectively, which provided an insight into the interplay of regulatory RNAs. We also explored lncRNA-mediated regulation of extra-chromosomal genes–i.e., mitochondrial and chloroplast coding sequences and observed their involvement in key biological processes like ‘photosynthesis’ and ‘oxidative phosphorylation’. In brief, these transcripts coordinate important biological functions via interactions with both coding and non-coding RNAs as well as TFs in grapevine. Our study would facilitate future experiments in unraveling regulatory mechanisms of development in this fruit crop of economic importance.
UR - http://www.scopus.com/inward/record.url?scp=85062583633&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-38989-7
DO - 10.1038/s41598-019-38989-7
M3 - Article
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 3552
ER -