LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia

Christian Henneberger*, Lucie Bard, Aude Panatier, James P. Reynolds, Olga Kopach, Nikolay I. Medvedev, Daniel Minge, Michel K. Herde, Stefanie Anders, Igor Kraev, Janosch P. Heller, Sylvain Rama, Kaiyu Zheng, Thomas P. Jensen, Inmaculada Sanchez-Romero, Colin J. Jackson, Harald Janovjak, Ole Petter Ottersen, Erlend Arnulf Nagelhus, Stephane H.R. OlietMichael G. Stewart*, U. Valentin Nägerl*, Dmitri A. Rusakov*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    171 Citations (SciVal)

    Abstract

    Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.

    Original languageEnglish
    Pages (from-to)919-936.e11
    JournalNeuron
    Volume108
    Issue number5
    DOIs
    Publication statusPublished - 9 Dec 2020

    Fingerprint

    Dive into the research topics of 'LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia'. Together they form a unique fingerprint.

    Cite this