Machine learner optimization of atom loading in optical nanofiber evanescent dipole traps

Ratnesh K. Gupta, Jesse L. Everett*, Aaron D. Tranter, René Henke, Vandna Gokhroo, Ping Koy Lam, Síle Nic Chormaic

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Abstract

    We use an online machine learning algorithm to optimize cooling and loading of rubidium-87 atoms into an evanescent dipole trap array along an optical nanofiber, increasing the number of trapped atoms by 50%.

    Original languageEnglish
    Title of host publicationQuantum 2.0, QUANTUM 2022
    PublisherOptica Publishing Group
    ISBN (Electronic)9781957171111
    Publication statusPublished - 2022
    EventQuantum 2.0, QUANTUM 2022 - Boston, United States
    Duration: 13 Jun 202216 Jun 2022

    Publication series

    NameOptics InfoBase Conference Papers
    ISSN (Electronic)2162-2701

    Conference

    ConferenceQuantum 2.0, QUANTUM 2022
    Country/TerritoryUnited States
    CityBoston
    Period13/06/2216/06/22

    Fingerprint

    Dive into the research topics of 'Machine learner optimization of atom loading in optical nanofiber evanescent dipole traps'. Together they form a unique fingerprint.

    Cite this