Abstract
Climate change and climate variability in Malawi have negatively affected the production of maize, a staple food crop. This has adversely affected food security. On the other hand, there have been increases in growing area, production, yield, consumption, and commercialization of both cassava and sweet potato. Factors behind these increases include the adaptive capacity of these crops in relation to climate change and variability, structural adjustment programs, population growth and urbanization, new farming technologies, and economic development. Cassava and sweet potato are seen to have the potential to contribute to food security and alleviate poverty among rural communities. This study used a simple generic growth index model called GROWEST to model observed yields of maize, cassava, and sweet potato across Malawi between 2001 and 2012. The method can be viewed as a hybrid approach between complex process-based crop models and typical statistical models. For each food crop, the GROWEST model was able to provide a robust correlation between observed yields and spatially interpolated monthly climate. The model parameters, which included optimum growing temperatures and growing seasons, were well determined and agreed with known values. This indicated that these models could be used with reasonable confidence to project the impacts of climate change on crop yield. These projections could help assess the future of food security in Malawi under the changing climate and assist in planning for this future.
Original language | English |
---|---|
Title of host publication | African Handbook of Climate Change Adaptation |
Subtitle of host publication | With 610 Figures and 361 Tables |
Publisher | Springer International Publishing Switzerland |
Pages | 617-637 |
Number of pages | 21 |
ISBN (Electronic) | 9783030451066 |
ISBN (Print) | 9783030451059 |
DOIs | |
Publication status | Published - 1 Jan 2021 |