@inbook{7d95f68651a949379099d930d7c0a427,
title = "Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical and computational methodology",
abstract = "The Earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer; at the boundaries between plates the rheology is thought to be dominated by brittle processes. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic / brittle convection system needs to be considered. A Lagrangian Integration point finite element method is discussed which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. We also describe the general, parallel implementation of this method (SNARK) and compare the performance to a highly optimized, serial prototype code (ELLIPSIS). The specialized code shows better scaling for a single processor. The parallel scaling of the general code is very flat for {"}realistic{"} problem sizes indicating efficient use of multiple processors.",
author = "Louis Moresi and David May and Justin Freeman and Bill Appelbe",
year = "2003",
doi = "10.1007/3-540-44863-2_76",
language = "English",
isbn = "9783540401964",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "781--787",
editor = "Sloot, {Peter M.A.} and David Abramson and Bogdanov, {Alexander V.} and Gorbachev, {Yuriy E.} and Dongarra, {Jack J.} and Zomaya, {Albert Y.}",
booktitle = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
address = "Germany",
}