TY - JOUR
T1 - Many Roads Lead to Lithium
T2 - Formation Pathways For Lithium-rich Red Giants
AU - Sayeed, Maryum
AU - Ness, Melissa K.
AU - Montet, Benjamin T.
AU - Cantiello, Matteo
AU - Casey, Andrew R.
AU - Buder, Sven
AU - Bedell, Megan
AU - Breivik, Katelyn
AU - Metzger, Brian D.
AU - Martell, Sarah L.
AU - McGee-Gold, Leah
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Stellar models predict that lithium (Li) inside a star is destroyed during the first dredge-up phase, yet 1.2% of red giant stars are Li-rich. We aim to uncover possible origins of this population, by analyzing 1099 Li-rich giants (A(Li) ≥ 1.5) in GALAH DR3. To expose peculiar traits of Li-rich stars, we construct a reference sample of Li-normal (doppelgänger) stars with matched evolutionary state and fiducial iron-peak and alpha-process abundances ([Fe/H] and [Mg/Fe]). Comparing Li-rich and doppelgänger spectra reveals systematic differences in the Hα and Ca-triplet line profiles associated with the velocity broadening measurement. We also find twice as many Li-rich stars appear to be fast rotators (2% with v broad ≳ 20 km s−1) compared to doppelgängers. On average, Li-rich stars have higher abundances than their doppelgängers, for a subset of elements, and Li-rich stars at the base of RGB have higher mean s-process abundances (≥0.05 dex for Ba, Y, Zr), relative to their doppelgängers. External mass-transfer from intermediate-mass AGB companions could explain this signature. Additional companion analysis excludes binaries with mass ratios ≳0.5 at ≳7 au. Finally, we confirm a prevalence of Li-rich stars on the red clump that increases with lithium, which supports an evolutionary state mechanism for Li-enhancement. Multiple culprits, including binary spin-up and mass-transfer, are therefore likely mechanisms of Li-enrichment.
AB - Stellar models predict that lithium (Li) inside a star is destroyed during the first dredge-up phase, yet 1.2% of red giant stars are Li-rich. We aim to uncover possible origins of this population, by analyzing 1099 Li-rich giants (A(Li) ≥ 1.5) in GALAH DR3. To expose peculiar traits of Li-rich stars, we construct a reference sample of Li-normal (doppelgänger) stars with matched evolutionary state and fiducial iron-peak and alpha-process abundances ([Fe/H] and [Mg/Fe]). Comparing Li-rich and doppelgänger spectra reveals systematic differences in the Hα and Ca-triplet line profiles associated with the velocity broadening measurement. We also find twice as many Li-rich stars appear to be fast rotators (2% with v broad ≳ 20 km s−1) compared to doppelgängers. On average, Li-rich stars have higher abundances than their doppelgängers, for a subset of elements, and Li-rich stars at the base of RGB have higher mean s-process abundances (≥0.05 dex for Ba, Y, Zr), relative to their doppelgängers. External mass-transfer from intermediate-mass AGB companions could explain this signature. Additional companion analysis excludes binaries with mass ratios ≳0.5 at ≳7 au. Finally, we confirm a prevalence of Li-rich stars on the red clump that increases with lithium, which supports an evolutionary state mechanism for Li-enhancement. Multiple culprits, including binary spin-up and mass-transfer, are therefore likely mechanisms of Li-enrichment.
UR - http://www.scopus.com/inward/record.url?scp=85187996265&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ad1936
DO - 10.3847/1538-4357/ad1936
M3 - Article
SN - 0004-637X
VL - 964
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 42
ER -