TY - JOUR
T1 - Mapping the PedsQL™ onto the CHU9D
T2 - An Assessment of External Validity in a Large Community-Based Sample
AU - Mpundu-Kaambwa, Christine
AU - Chen, Gang
AU - Huynh, Elisabeth
AU - Russo, Remo
AU - Ratcliffe, Julie
N1 - Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Background: Mapping algorithms have been indicated as a second-best solution for estimating health state utilities for the calculation of quality-adjusted life-years within cost-utility analysis when no generic preference-based measure is incorporated into the study. However, the predictive performance of these algorithms may be variable and hence it is important to assess their external validity before application in different settings. Objective: The aim of this study was to assess the external validity and generalisability of existing mapping algorithms for predicting preference-based Child Health Utility 9D (CHU9D) utilities from non-preference-based Pediatric Quality of Life Inventory (PedsQL) scores among children and adolescents living with or without disabilities or health conditions. Methods: Five existing mapping algorithms, three developed using data from an Australian community population and two using data from a UK population with one or more self-reported health conditions, were externally validated on data from the Longitudinal Study of Australian Children (n = 6623). The predictive accuracy of each mapping algorithm was assessed using the mean absolute error (MAE) and the mean squared error (MSE). Results: Values for the MAE (0.0741–0.2302) for all validations were within the range of published estimates. In general, across all ages, the algorithms amongst children and adolescents with disabilities/health conditions (Australia MAE: 0.2085–0.2302; UK MAE: 0.0854–0.1162) performed worse relative to those amongst children and adolescents without disabilities/health conditions (Australia MAE: 0.1424–0.1645; UK MAE: 0.0741–0.0931). Conclusions: The published mapping algorithms have acceptable predictive accuracy as measured by MAE and MSE. The findings of this study indicate that the choice of the most appropriate mapping algorithm to apply may vary according to the population under consideration.
AB - Background: Mapping algorithms have been indicated as a second-best solution for estimating health state utilities for the calculation of quality-adjusted life-years within cost-utility analysis when no generic preference-based measure is incorporated into the study. However, the predictive performance of these algorithms may be variable and hence it is important to assess their external validity before application in different settings. Objective: The aim of this study was to assess the external validity and generalisability of existing mapping algorithms for predicting preference-based Child Health Utility 9D (CHU9D) utilities from non-preference-based Pediatric Quality of Life Inventory (PedsQL) scores among children and adolescents living with or without disabilities or health conditions. Methods: Five existing mapping algorithms, three developed using data from an Australian community population and two using data from a UK population with one or more self-reported health conditions, were externally validated on data from the Longitudinal Study of Australian Children (n = 6623). The predictive accuracy of each mapping algorithm was assessed using the mean absolute error (MAE) and the mean squared error (MSE). Results: Values for the MAE (0.0741–0.2302) for all validations were within the range of published estimates. In general, across all ages, the algorithms amongst children and adolescents with disabilities/health conditions (Australia MAE: 0.2085–0.2302; UK MAE: 0.0854–0.1162) performed worse relative to those amongst children and adolescents without disabilities/health conditions (Australia MAE: 0.1424–0.1645; UK MAE: 0.0741–0.0931). Conclusions: The published mapping algorithms have acceptable predictive accuracy as measured by MAE and MSE. The findings of this study indicate that the choice of the most appropriate mapping algorithm to apply may vary according to the population under consideration.
UR - http://www.scopus.com/inward/record.url?scp=85067026503&partnerID=8YFLogxK
U2 - 10.1007/s40273-019-00808-2
DO - 10.1007/s40273-019-00808-2
M3 - Article
SN - 1170-7690
VL - 37
SP - 1139
EP - 1153
JO - PharmacoEconomics
JF - PharmacoEconomics
IS - 9
ER -