Mars: A video benchmark for large-scale person re-identification

Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su, Shengjin Wang*, Qi Tian

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

701 Citations (Scopus)

Abstract

This paper considers person re-identification (re-id) in videos. We introduce a new video re-id dataset, named Motion Analysis and Re-identification Set (MARS), a video extension of the Market- 1501 dataset. To our knowledge, MARS is the largest video re-id dataset to date. Containing 1,261 IDs and around 20,000 tracklets, it provides rich visual information compared to image-based datasets. Meanwhile, MARS reaches a step closer to practice. The tracklets are automatically generated by the Deformable Part Model (DPM) as pedestrian detector and the GMMCP tracker. A number of false detection/tracking results are also included as distractors which would exist predominantly in practical video databases. Extensive evaluation of the state-of-the-art methods including the space-time descriptors and CNN is presented. We show that CNN in classification mode can be trained from scratch using the consecutive bounding boxes of each identity. The learned CNN embedding outperforms other competing methods considerably and has good generalization ability on other video re-id datasets upon fine-tuning.

Original languageEnglish
Title of host publicationComputer Vision - 14th European Conference, ECCV 2016, Proceedings
EditorsBastian Leibe, Jiri Matas, Nicu Sebe, Max Welling
PublisherSpringer Verlag
Pages868-884
Number of pages17
ISBN (Print)9783319464657
DOIs
Publication statusPublished - 2016
Externally publishedYes
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: 8 Oct 201616 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9910 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th European Conference on Computer Vision, ECCV 2016
Country/TerritoryNetherlands
CityAmsterdam
Period8/10/1616/10/16

Fingerprint

Dive into the research topics of 'Mars: A video benchmark for large-scale person re-identification'. Together they form a unique fingerprint.

Cite this