@inproceedings{f68c670d75114fc8a01632909486c843,
title = "Melodious Micro-frissons: Detecting Music Genres from Skin Response",
abstract = "The relationship between music and human physiological signals has been a topic of interest among researchers for many years. Understanding this relationship can not only lead to more enhanced music therapy methods, but it may also help in finding a cure to mental disorders and epileptic seizures that are triggered by certain music. In this paper, we investigate the effects of 3 different genres of music in participants' Electrodermal Activity (EDA). Signals were recorded from 24 participants while they listened to 12 music stimuli. Various feature selection methods were applied to a number of features which were extracted from the signals. A simple neural network using Genetic Algorithm (GA) feature selection can reach as high as 96.8% accuracy in classifying 3 different music genres. Classification based on participants' subjective rating of emotion reaches 98.3% accuracy with the Statistical Dependency (SD) / Minimal Redundancy Maximum Relevance (MRMR) feature selection technique. This shows that human emotion has a strong correlation with different types of music. In the future this system can be used to distinguish music based on their positive of negative effect on human mental health.",
keywords = "Classification, Electro-dermal Activity, Music Therapy, Physiological Signals",
author = "Rahman, {Jessica Sharmin} and Tom Gedeon and Sabrina Caldwell and Richard Jones and Hossain, {Md Zakir} and Xuanying Zhu",
note = "Publisher Copyright: {\textcopyright} 2019 IEEE.; 2019 International Joint Conference on Neural Networks, IJCNN 2019 ; Conference date: 14-07-2019 Through 19-07-2019",
year = "2019",
month = jul,
doi = "10.1109/IJCNN.2019.8852318",
language = "English",
series = "Proceedings of the International Joint Conference on Neural Networks",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2019 International Joint Conference on Neural Networks, IJCNN 2019",
address = "United States",
}