Memory efficient max flow for multi-label submodular MRFs

Thalaiyasingam Ajanthan, Richard Hartley, Mathieu Salzmann

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    4 Citations (Scopus)

    Abstract

    Multi-label submodular Markov Random Fields (MRFs) have been shown to be solvable using max-flow based on an encoding of the labels proposed by Ishikawa, in which each variable Xi is represented by l nodes (where l is the number of labels) arranged in a column. However, this method in general requires 2 l2 edges for each pair of neighbouring variables. This makes it inapplicable to realistic problems with many variables and labels, due to excessive memory requirement. In this paper, we introduce a variant of the max-flow algorithm that requires much less storage. Consequently, our algorithm makes it possible to optimally solve multi-label submodular problems involving large numbers of variables and labels on a standard computer.

    Original languageEnglish
    Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    PublisherIEEE Computer Society
    Pages5867-5876
    Number of pages10
    ISBN (Electronic)9781467388504
    DOIs
    Publication statusPublished - 9 Dec 2016
    Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
    Duration: 26 Jun 20161 Jul 2016

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2016-December
    ISSN (Print)1063-6919

    Conference

    Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    Country/TerritoryUnited States
    CityLas Vegas
    Period26/06/161/07/16

    Fingerprint

    Dive into the research topics of 'Memory efficient max flow for multi-label submodular MRFs'. Together they form a unique fingerprint.

    Cite this