TY - GEN
T1 - Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM
AU - Esmaeilzadeh, Mohammad
AU - Soltanian-Zadeh, Hamid
AU - Jafari-Khouzani, Kourosh
PY - 2012
Y1 - 2012
N2 - This paper improves the Lateralization (identification of the epileptogenic hippocampus) accuracy in Mesial Temporal Lobe Epilepsy (mTLE). In patients with this kind of epilepsy, usually one of the brain's hippocampi is the focus of the epileptic seizures, and resection of the seizure focus is the ultimate treatment to control or reduce the seizures. Moreover, the epileptogenic hippocampus is prone to shrinkage and deformation; therefore, shape analysis of the hippocampus is advantageous in the preoperative assessment for the Lateralization. The method utilized for shape analysis is the Spherical Harmonics (SPHARM). In this method, the shape of interest is decomposed using a set of bases functions and the obtained coefficients of expansion are the features describing the shape. To perform shape comparison and analysis, some pre- and post-processing steps such as "alignment of different subjects' hippocampi" and the "reduction of feature-space dimension" are required. To this end, first order ellipsoid is used for alignment. For dimension reduction, we propose to keep only the SPHARM coefficients with maximum conformity to the hippocampus shape. Then, using these coefficients of normal and epileptic subjects along with 3D invariants, specific lateralization indices are proposed. Consequently, the 1536 SPHARM coefficients of each subject are summarized into 3 indices, where for each index the negative (positive) value shows that the left (right) hippocampus is deformed (diseased). Employing these indices, the best achieved lateralization accuracy for clustering and classification algorithms are 85% and 92%, respectively. This is a significant improvement compared to the conventional volumetric method.
AB - This paper improves the Lateralization (identification of the epileptogenic hippocampus) accuracy in Mesial Temporal Lobe Epilepsy (mTLE). In patients with this kind of epilepsy, usually one of the brain's hippocampi is the focus of the epileptic seizures, and resection of the seizure focus is the ultimate treatment to control or reduce the seizures. Moreover, the epileptogenic hippocampus is prone to shrinkage and deformation; therefore, shape analysis of the hippocampus is advantageous in the preoperative assessment for the Lateralization. The method utilized for shape analysis is the Spherical Harmonics (SPHARM). In this method, the shape of interest is decomposed using a set of bases functions and the obtained coefficients of expansion are the features describing the shape. To perform shape comparison and analysis, some pre- and post-processing steps such as "alignment of different subjects' hippocampi" and the "reduction of feature-space dimension" are required. To this end, first order ellipsoid is used for alignment. For dimension reduction, we propose to keep only the SPHARM coefficients with maximum conformity to the hippocampus shape. Then, using these coefficients of normal and epileptic subjects along with 3D invariants, specific lateralization indices are proposed. Consequently, the 1536 SPHARM coefficients of each subject are summarized into 3 indices, where for each index the negative (positive) value shows that the left (right) hippocampus is deformed (diseased). Employing these indices, the best achieved lateralization accuracy for clustering and classification algorithms are 85% and 92%, respectively. This is a significant improvement compared to the conventional volumetric method.
KW - 3D Representation and registration
KW - Hippocampus shape analysis
KW - MTLE lateralization
KW - Mesial temporal lobe epilepsy (mTLE)
KW - Spherical Harmonics (SPHARM)
KW - Support Vector Machine (SVM)
UR - http://www.scopus.com/inward/record.url?scp=84860740743&partnerID=8YFLogxK
U2 - 10.1117/12.911740
DO - 10.1117/12.911740
M3 - Conference contribution
SN - 9780819489630
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2012
T2 - Medical Imaging 2012: Image Processing
Y2 - 6 February 2012 through 9 February 2012
ER -