TY - JOUR
T1 - Metabolic Profiling of Diabetic Cats in Remission
AU - Gottlieb, Susan
AU - Rand, Jacquie
AU - Anderson, Stephen T.
AU - Morton, John Murray
AU - Dias, Daniel A.
AU - Boughton, Berin A.
AU - Roessner, Ute
AU - Ramadan, Ziad
N1 - Publisher Copyright:
© Copyright © 2020 Gottlieb, Rand, Anderson, Morton, Dias, Boughton, Roessner and Ramadan.
PY - 2020/5/15
Y1 - 2020/5/15
N2 - Background: The majority of diabetic cats in remission have abnormal glucose tolerance, and approximately one third relapse within 1 year. Greater understanding of the metabolic characteristics of diabetic cats in remission, and predictors of relapse is required to effectively monitor and manage these cats. Objectives: To identify and compare differences in plasma metabolites between diabetic cats in remission and healthy control cats using a metabolomics approach. Secondly, to assess whether identified metabolites are predictors of diabetic relapse. Animals: Twenty cats in diabetic remission for a median of 101 days, and 22 healthy matched control cats. Methods: Cats were admitted to a clinic, and casual blood glucose was recorded. After a 24 h fast, blood glucose concentration was measured, then a blood sample was taken for metabolomic (GCMS and LCMS) analyses. Three hours later, a simplified intravenous glucose tolerance test (1 g glucose/kg) was performed. Cats were monitored for diabetes relapse for at least 9 months (270 days) after baseline testing. Results: Most cats in remission continued to display impaired glucose tolerance. Concentrations of 16 identified metabolites differed (P ≤ 0.05) between remission and control cats: 10 amino acids and stearic acid (all lower in remission cats), and glucose, glycine, xylitol, urea and carnitine (all higher in remission cats). Moderately close correlations were found between these 16 metabolites and variables assessing glycaemic responses (most |r| = 0.31 to 0.69). Five cats in remission relapsed during the study period. No metabolite was identified as a predictor of relapse. Conclusion and clinical importance: This study shows that cats in diabetic remission have abnormal metabolism.
AB - Background: The majority of diabetic cats in remission have abnormal glucose tolerance, and approximately one third relapse within 1 year. Greater understanding of the metabolic characteristics of diabetic cats in remission, and predictors of relapse is required to effectively monitor and manage these cats. Objectives: To identify and compare differences in plasma metabolites between diabetic cats in remission and healthy control cats using a metabolomics approach. Secondly, to assess whether identified metabolites are predictors of diabetic relapse. Animals: Twenty cats in diabetic remission for a median of 101 days, and 22 healthy matched control cats. Methods: Cats were admitted to a clinic, and casual blood glucose was recorded. After a 24 h fast, blood glucose concentration was measured, then a blood sample was taken for metabolomic (GCMS and LCMS) analyses. Three hours later, a simplified intravenous glucose tolerance test (1 g glucose/kg) was performed. Cats were monitored for diabetes relapse for at least 9 months (270 days) after baseline testing. Results: Most cats in remission continued to display impaired glucose tolerance. Concentrations of 16 identified metabolites differed (P ≤ 0.05) between remission and control cats: 10 amino acids and stearic acid (all lower in remission cats), and glucose, glycine, xylitol, urea and carnitine (all higher in remission cats). Moderately close correlations were found between these 16 metabolites and variables assessing glycaemic responses (most |r| = 0.31 to 0.69). Five cats in remission relapsed during the study period. No metabolite was identified as a predictor of relapse. Conclusion and clinical importance: This study shows that cats in diabetic remission have abnormal metabolism.
KW - diabetes mellitus
KW - diabetic remission
KW - feline diabetes
KW - feline endocrinology
KW - metabolomics
UR - http://www.scopus.com/inward/record.url?scp=85085492210&partnerID=8YFLogxK
U2 - 10.3389/fvets.2020.00218
DO - 10.3389/fvets.2020.00218
M3 - Article
SN - 2297-1769
VL - 7
JO - Frontiers in Veterinary Science
JF - Frontiers in Veterinary Science
M1 - 218
ER -