Abstract
We investigated the mechanisms by which previous 'priming' activation of group I metabotropic glutamate receptors (mGluRs) facilitates the persistence of long-term potentiation (LTP) in area CA1 of rat hippocampal slices. Priming of LTP was elicited by either pharmacological or synaptic activation of mGluRs before a weak tetanic stimulus that normally produced only a rapidly decaying phase of LTP that did not involve protein synthesis or mGluRs. Pharmacological priming of LTP persistence by a selective group I mGluR agonist was blocked by an inhibitor of group I mGluRs and by inhibitors of translation, but not by a transcriptional inhibitor. The same mGluR agonist increased 35S-methionine incorporation into slice proteins. LTP could also be facilitated using a synaptic stimulation priming protocol, and this effect was similarly blocked by group 1 mGluR and protein synthesis inhibitors. Furthermore, using a two-pathway protocol, the synaptic priming of LTP was found to be input-specific. To test for the contribution of group I mGluRs and protein synthesis to LTP in nonprimed slices, a longer duration control tetanization protocol was used to elicit a more slowly decaying form of LTP than did the weak tetanus used in the previous experiments. The persistence of the LTP induced by this stronger tetanus was dependent on mGluR activation and protein synthesis but not on transcription. Together, these results suggest that mGluRs couple to nearby protein synthesis machinery to homosynaptically regulate an intermediate phase of LTP dependent on new proteins made from pre-existing mRNA.
Original language | English |
---|---|
Pages (from-to) | 969-976 |
Number of pages | 8 |
Journal | Journal of Neuroscience |
Volume | 20 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Feb 2000 |