TY - JOUR
T1 - Metallophilic Contacts in 2-C6F4PPh2 Bridged Heterobinuclear Complexes
T2 - A Crystallographic and Computational Study
AU - Wächtler, Erik
AU - Privér, Steven H.
AU - Wagler, Jörg
AU - Heine, Thomas
AU - Zhechkov, Lyuben
AU - Bennett, Martin A.
AU - Bhargava, Suresh K.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/7/20
Y1 - 2015/7/20
N2 - (Figure Presented) Treatment of the bis(chelate) complex trans-[Pd(κ2-2-C6F4PPh2)2] (7) with PMe3 gave trans-[Pd(κC-2-C6F4PPh2)2(PMe3)2] (13) as a mixture of syn- and anti-isomers. Reaction of 13 with CuCl, AgCl, or [AuCl(tht)] (tht = tetrahydrothiophene) gave the heterobinuclear complexes [(Me3P)2Pd(μ-2-C6F4PPh2)2MCl] [M = Cu (14), Ag (15), Au (16)], from which the corresponding salts [(Me3P)2Pd(μ-2-C6F4PPh2)2M]PF6 [M = Cu (17), Ag (18), Au (19)] could be prepared by abstraction of the chloro ligand with TlPF6; 18, as well as its triflato (20) and trifluoroacetato (21) analogues, were also prepared directly from 13 and the appropriate silver salt. Reaction of 13 with [AuCl(PMe3)] gave the zwitterionic complex [(Me3P)PdCl(μ-2-C6F4PPh2)2Au] (24) in which the 2-C6F4PPh2 ligands are in a head-to-head arrangement. In contrast, the analogous reaction with [AuCl(PPh3)] gave [(Ph3P)PdCl(μ-2-C6F4PPh2)2Au] (25) with a head-to-tail ligand arrangement. Single crystal X-ray diffraction studies of complexes 14-21 show short metal-metal separations [2.7707(11)-2.9423(3) Å] suggestive of attractive noncovalent (dispersion) interactions, a conclusion that is supported by theoretical calculations of the electron localization function and the noncovalent interactions descriptor.
AB - (Figure Presented) Treatment of the bis(chelate) complex trans-[Pd(κ2-2-C6F4PPh2)2] (7) with PMe3 gave trans-[Pd(κC-2-C6F4PPh2)2(PMe3)2] (13) as a mixture of syn- and anti-isomers. Reaction of 13 with CuCl, AgCl, or [AuCl(tht)] (tht = tetrahydrothiophene) gave the heterobinuclear complexes [(Me3P)2Pd(μ-2-C6F4PPh2)2MCl] [M = Cu (14), Ag (15), Au (16)], from which the corresponding salts [(Me3P)2Pd(μ-2-C6F4PPh2)2M]PF6 [M = Cu (17), Ag (18), Au (19)] could be prepared by abstraction of the chloro ligand with TlPF6; 18, as well as its triflato (20) and trifluoroacetato (21) analogues, were also prepared directly from 13 and the appropriate silver salt. Reaction of 13 with [AuCl(PMe3)] gave the zwitterionic complex [(Me3P)PdCl(μ-2-C6F4PPh2)2Au] (24) in which the 2-C6F4PPh2 ligands are in a head-to-head arrangement. In contrast, the analogous reaction with [AuCl(PPh3)] gave [(Ph3P)PdCl(μ-2-C6F4PPh2)2Au] (25) with a head-to-tail ligand arrangement. Single crystal X-ray diffraction studies of complexes 14-21 show short metal-metal separations [2.7707(11)-2.9423(3) Å] suggestive of attractive noncovalent (dispersion) interactions, a conclusion that is supported by theoretical calculations of the electron localization function and the noncovalent interactions descriptor.
UR - http://www.scopus.com/inward/record.url?scp=84937709128&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.5b00939
DO - 10.1021/acs.inorgchem.5b00939
M3 - Article
SN - 0020-1669
VL - 54
SP - 6947
EP - 6957
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 14
ER -