TY - JOUR
T1 - MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation
AU - Burr, Marian L.
AU - Van Den Boomen, Dick J.H.
AU - Bye, Helen
AU - Antrobus, Robin
AU - Wiertz, Emmanuel J.
AU - Lehner, Paul J.
PY - 2013/8/27
Y1 - 2013/8/27
N2 - Misfolded MHC class I heavy chains (MHC I HCs) are targeted for endoplasmic reticulum (ER)-associated degradation (ERAD) by the ubiquitin E3 ligase HRD1, and E2 ubiquitin conjugating enzyme UBE2J1, and represent one of the few known endogenous ERAD substrates. The mechanism by which misfolded proteins are dislocated across the ER membrane into the cytosol is unclear. Here, we investigate the requirements for MHC I ubiquitination and degradation and show that endogenous misfolded MHC I HCs are recognized in the ER lumen by EDEM1 in a glycan-dependent manner and targeted to the core SEL1L/HRD1/UBE2J1 complex. A soluble MHC I HC lacking its transmembrane domain and cytosolic tail uses the same ERAD components and is degraded as efficiently as wildtype MHC I. Unexpectedly, HRD1-dependent polyubiquitination is preferentially targeted to the ER luminal domain of full-length MHC I HCs, despite the presence of an exposed cytosolic C-terminal tail. MHC I luminal domain ubiquitination occurs before p97 ATPase-mediated extraction from the ER membrane and can be targeted to nonlysine, as well as lysine, residues. A subset of integral membrane proteins, therefore, requires an early dislocation event to expose part of their luminal domain to the cytosol, before HRD1-mediated polyubiquitination and dislocation.
AB - Misfolded MHC class I heavy chains (MHC I HCs) are targeted for endoplasmic reticulum (ER)-associated degradation (ERAD) by the ubiquitin E3 ligase HRD1, and E2 ubiquitin conjugating enzyme UBE2J1, and represent one of the few known endogenous ERAD substrates. The mechanism by which misfolded proteins are dislocated across the ER membrane into the cytosol is unclear. Here, we investigate the requirements for MHC I ubiquitination and degradation and show that endogenous misfolded MHC I HCs are recognized in the ER lumen by EDEM1 in a glycan-dependent manner and targeted to the core SEL1L/HRD1/UBE2J1 complex. A soluble MHC I HC lacking its transmembrane domain and cytosolic tail uses the same ERAD components and is degraded as efficiently as wildtype MHC I. Unexpectedly, HRD1-dependent polyubiquitination is preferentially targeted to the ER luminal domain of full-length MHC I HCs, despite the presence of an exposed cytosolic C-terminal tail. MHC I luminal domain ubiquitination occurs before p97 ATPase-mediated extraction from the ER membrane and can be targeted to nonlysine, as well as lysine, residues. A subset of integral membrane proteins, therefore, requires an early dislocation event to expose part of their luminal domain to the cytosol, before HRD1-mediated polyubiquitination and dislocation.
UR - http://www.scopus.com/inward/record.url?scp=84883327585&partnerID=8YFLogxK
U2 - 10.1073/pnas.1303380110
DO - 10.1073/pnas.1303380110
M3 - Article
C2 - 23929775
AN - SCOPUS:84883327585
SN - 0027-8424
VL - 110
SP - 14290
EP - 14295
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 35
ER -