Abstract
Micro-arcing and breakdown of the wall plasma sheath in radio frequency (RF) plasmas is studied in a hollow cathode system, using a Langmuir probe to measure the floating potential. Micro-arcing was induced reproducibly by controlling the floating potential. By dc grounding the hollow cathode, a negative current can flow to ground resulting in a higher voltage sheath between the plasma and the earthed vacuum vessel. The wall arcing threshold of the plasma potential in this system is in the vicinity of 50 V. In the present system, the charging process to rebuild the plasma potential, which is about a few tens of milliseconds, is much slower than the microsecond discharge. The arcing frequency was found to depend strongly on the plasma potential and the pressure. We propose a mechanism for the dependence of the frequency of periodic micro-arcing based on the development of electron field emission sites. The measurement of floating potential is suggested as a useful parameter to monitor and prevent micro-arcing in RF plasmas.
Original language | English |
---|---|
Pages (from-to) | 2871-2875 |
Number of pages | 5 |
Journal | Journal Physics D: Applied Physics |
Volume | 37 |
Issue number | 20 |
DOIs | |
Publication status | Published - 21 Oct 2004 |