MicroRNA-related genetic variants are associated with diabetic retinopathy in type 1 diabetes mellitus

Ebony Liu*, Georgia Kaidonis, Bennet J. McComish, Mark C. Gillies, Sotoodeh Abhary, Rohan W. Essex, John H. Chang, Bishwanath Pal, Mark Daniell, Stewart Lake, Nikolai Petrovsky, Alex W. Hewitt, Alicia Jenkins, Ecosse L. Lamoureux, Jonathan M. Gleadle, Jamie E. Craig, Kathryn P. Burdon

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    PURPOSE. Few studies have explored the association of genetic variants in microRNA genes and binding sites with diabetic retinopathy (DR) in type 1 diabetes. We conducted a genome-wide scan for single nucleotide polymorphisms (SNPs) in these genes by using data from a genomewide association study (GWAS). METHODS. All known SNPs were imputed from our GWAS data (n = 325) of DR cases and diabetic controls (no DR). Relevant SNPS were extracted using miRNASNP and PolymiRTS (version 2) databases. χ 2 tests and logistic regression (adjusting for age, sex, duration of diabetes, HbA1c, and hypertension) were used to test the association between the imputed SNPs and DR phenotypes (any DR, nonproliferative DR [NPDR], proliferative DR [PDR], diabetic macular edema [DME], and sight-threatening DR defined as PDR, severe NPDR, or clinically significant macula edema [CSME]) compared with diabetic controls. Top-ranking SNPs were genotyped in a larger cohort (N = 560) to confirm their association with DR. RESULTS. Three SNPs (rs10061133, rs1049835, rs9501255) were selected and genotyped in the final cohort. Rs10061133 in MIR449b was protective of sight-threatening DR (odds ratio [OR] = 0.32, P = 3.68 × 10-4) and PDR (OR = 0.30, P = 8.12 × 10-4), and the associations became more significant as the cohort increased in size. CONCLUSIONS. Rs10061133 in MIR449b is significantly associated with a decreased risk of PDR and sight-threatening DR in Caucasian patients with type 1 diabetes. This can guide future studies on genetic risk profiling and on developing microRNA-related therapies for sightthreatening DR.

    Original languageEnglish
    Pages (from-to)3937-3942
    Number of pages6
    JournalInvestigative Ophthalmology and Visual Science
    Volume60
    Issue number12
    DOIs
    Publication statusPublished - 1 Sept 2019

    Fingerprint

    Dive into the research topics of 'MicroRNA-related genetic variants are associated with diabetic retinopathy in type 1 diabetes mellitus'. Together they form a unique fingerprint.

    Cite this