Abstract
The nuclear structure dependence of direct reactions that remove a pair of like or unlike nucleons from a fast 12C projectile beam are considered. Specifically, we study the differences in the two-nucleon correlations present and the predicted removal cross sections when using p-shell shell-model and multi-no-core shell-model (NCSM) descriptions of the two-nucleon overlaps for the transitions to the mass A=10 projectile residues. The NCSM calculations use modern chiral two-nucleon and three-nucleon (NN+3N) interactions. The np-removal cross sections to low-lying T=0, 10B final states are enhanced when using the NCSM two-nucleon amplitudes. The calculated absolute and relative partial cross sections to the low-energy 10B final states show a significant sensitivity to the interactions used, suggesting that assessments of the overlap functions for these transitions and confirmations of their structure could be made using final-state-exclusive measurements of the np-removal cross sections and the associated momentum distributions of the forward traveling projectile-like residues.
Original language | English |
---|---|
Article number | 054609 |
Journal | Physical Review C - Nuclear Physics |
Volume | 86 |
Issue number | 5 |
DOIs | |
Publication status | Published - 29 Nov 2012 |
Externally published | Yes |