TY - JOUR
T1 - Mid-infrared cylindrical vector beams enabled by dielectric metasurfaces
AU - Zalogina, Anastasia
AU - Wang, Luyao
AU - Melik-Gaykazyan, Elizaveta
AU - Kivshar, Yuri
AU - Shadrivov, Ilya
AU - Kruk, Sergey
N1 - Publisher Copyright:
© 2021 Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Over the last decade, photonics in the mid-infrared (mid-IR) frequency range had major advances in both generation and detection of light. However, efficient manipulation of the mid-IR light still faces many challenges. Spatially inhomogeneous control over the wavefront and polarization of mid-IR radiation is particularly difficult. Many standard techniques used for visible and near-infrared frequencies, such as liquid crystal-based spatial light modulation, are not applicable in the mid-IR due to unfavorable material properties in that spectral range. Here, we demonstrate spatially inhomogeneous polarization control of the mid-infrared light using custom-designed vortex retarders. Vortex retarders, while being widely used in the near-infrared and visible spectral ranges for generation of cylindrical vector beams, have been missing in the mid-infrared spectral range. Our implementation of mid-infrared vortex retarders is based on the concept of metasurfaces. We demonstrate metasurface-based vortex retarders at the wavelengths of 2.9 and 3.5 μm. We compare the performance of all-dielectric metasurface vortex retarders with the elements arranged in square and hexagonal lattices [Arbabi et al., Nat. Nanotechnol. 10, 937-943 (2015) and Arbabi et al., Nat. Commun. 6, 7069 (2015)]. Our work could accelerate the adoption of metasurfaces for the development of novel classes of mid-infrared optical components.
AB - Over the last decade, photonics in the mid-infrared (mid-IR) frequency range had major advances in both generation and detection of light. However, efficient manipulation of the mid-IR light still faces many challenges. Spatially inhomogeneous control over the wavefront and polarization of mid-IR radiation is particularly difficult. Many standard techniques used for visible and near-infrared frequencies, such as liquid crystal-based spatial light modulation, are not applicable in the mid-IR due to unfavorable material properties in that spectral range. Here, we demonstrate spatially inhomogeneous polarization control of the mid-infrared light using custom-designed vortex retarders. Vortex retarders, while being widely used in the near-infrared and visible spectral ranges for generation of cylindrical vector beams, have been missing in the mid-infrared spectral range. Our implementation of mid-infrared vortex retarders is based on the concept of metasurfaces. We demonstrate metasurface-based vortex retarders at the wavelengths of 2.9 and 3.5 μm. We compare the performance of all-dielectric metasurface vortex retarders with the elements arranged in square and hexagonal lattices [Arbabi et al., Nat. Nanotechnol. 10, 937-943 (2015) and Arbabi et al., Nat. Commun. 6, 7069 (2015)]. Our work could accelerate the adoption of metasurfaces for the development of novel classes of mid-infrared optical components.
UR - http://www.scopus.com/inward/record.url?scp=85122185191&partnerID=8YFLogxK
U2 - 10.1063/5.0061825
DO - 10.1063/5.0061825
M3 - Article
SN - 2166-532X
VL - 9
JO - APL Materials
JF - APL Materials
IS - 12
M1 - 121113
ER -