Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals

Melissa D. Lane, Janice L. Bishop, M. Darby Dyar, Takahiro Hiroi, Stanley A. Mertzman, David L. Bish, Penelope L. King, A. Deanne Rogers

    Research output: Contribution to journalArticlepeer-review

    37 Citations (Scopus)

    Abstract

    Sulfate minerals are important indicators for aqueous geochemical environments. The geology and mineralogy of Mars have been studied through the use of various remote-sensing techniques, including thermal (mid-infrared) emission and visible/near-infrared reflectance spectroscopies. Spectral analyses of spacecraft data (from orbital and landed missions) using these techniques have indicated the presence of sulfate minerals on Mars, including Fe-rich sulfates on the iron-rich planet. Each individual Fe-sulfate mineral can be used to constrain bulk chemistry and lends more information about the specific formational environment [e.g., Fe2+ sulfates are typically more water soluble than Fe3+ sulfates and their presence would imply a water-limited (and lower Eh) environment; Fe3+ sulfates form over a range of hydration levels and indicate further oxidation (biological or abiological) and increased acidification]. To enable better interpretation of past and future terrestrial or planetary data sets, with respect to the Fe-sulfates, we present a comprehensive collection of mid-infrared thermal emission (2000 to 220 cm-1; 5-45 μm) and visible/near-infrared (0.35-5 μm) spectra of 21 different ferrous- and ferric-iron sulfate minerals. Mid-infrared vibrational modes (for SO4, OH, H2O) are assigned to each thermal emissivity spectrum, and the electronic excitation and transfer bands and vibrational OH, H2O, and SO4 overtone and combination bands are assigned to the visible/near-infrared reflectance spectra. Presentation and characterization of these Fe-sulfate thermal emission and visible/near-infrared reflectance spectra will enable the specific chemical environments to be determined when individual Fe-sulfate minerals are identified.

    Original languageEnglish
    Pages (from-to)66-82
    Number of pages17
    JournalAmerican Mineralogist
    Volume100
    Issue number1
    DOIs
    Publication statusPublished - 1 Jan 2015

    Fingerprint

    Dive into the research topics of 'Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals'. Together they form a unique fingerprint.

    Cite this