Mixability is Bayes risk curvature relative to log loss

Tim Van Erven*, Mark D. Reid, Robert C. Williamson

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    Mixability of a loss characterizes fast rates in the online learning setting of prediction with expert advice. The determination of the mixability constant for binary losses is straightforward but opaque. In the binary case we make this transparent and simpler by characterising mixability in terms of the second derivative of the Bayes risk of proper losses. We then extend this result to multiclass proper losses where there are few existing results. We show that mixability is governed by the maximum eigenvalue of the Hessian of the Bayes risk, relative to the Hessian of the Bayes risk for log loss. We conclude by comparing our result to other work that bounds prediction performance in terms of the geometry of the Bayes risk. Although all calculations are for proper losses, we also show how to carry the results across to improper losses.

    Original languageEnglish
    Pages (from-to)1639-1663
    Number of pages25
    JournalJournal of Machine Learning Research
    Volume13
    Publication statusPublished - May 2012

    Fingerprint

    Dive into the research topics of 'Mixability is Bayes risk curvature relative to log loss'. Together they form a unique fingerprint.

    Cite this