Abstract
We investigate many-body localization of interacting spinless fermions in a one-dimensional disordered and tilted lattice. The fermions undergo energy-dependent transitions from ergodic to Stark many-body localization driven by the tilted potential, which are manifested by the appearance of mobility edges between delocalized states and Stark many-body localized states even when the disorder is weak. We can concretely diagnose these transitions rather than crossovers by finite-size scaling of energy-level statistics. Moreover, in the Stark many-body localization, the entanglement entropy obeys the area law scaling, in analogy to that in the conventional many-body localization.
Original language | English |
---|---|
Article number | 023323 |
Journal | Physical Review A |
Volume | 103 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2021 |