Model-based pilot and data power adaptation in PSAM with periodic delayed feedback

Tharaka A. Lamahewa, Parastoo Sadeghi, Rodney A. Kennedy, Predrag B. Rapajic

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    We consider the optimum design of pilot-symbolassisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in mediumrate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.

    Original languageEnglish
    Pages (from-to)2247-2252
    Number of pages6
    JournalIEEE Transactions on Wireless Communications
    Volume8
    Issue number5
    DOIs
    Publication statusPublished - May 2009

    Fingerprint

    Dive into the research topics of 'Model-based pilot and data power adaptation in PSAM with periodic delayed feedback'. Together they form a unique fingerprint.

    Cite this