TY - JOUR
T1 - Modeling dynamics of diffusion across heterogeneous social networks
T2 - News diffusion in social media
AU - Kim, Minkyoung
AU - Newth, David
AU - Christen, Peter
N1 - Publisher Copyright:
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
PY - 2013
Y1 - 2013
N2 - Diverse online social networks are becoming increasingly interconnected by sharing information. Accordingly, emergent macro-level phenomena have been observed, such as the synchronous spread of information across different types of social media. Attempting to analyze the emergent global behavior is impossible from the examination of a single social platform, and dynamic influences between different social networks are not negligible. Furthermore, the underlying structural property of networks is important, as it drives the diffusion process in a stochastic way. In this paper, we propose a macro-level diffusion model with a probabilistic approach by combining both the heterogeneity and structural connectivity of social networks. As real-world phenomena, we explore instances of news diffusion across different social media platforms from a dataset that contains over 386 million web documents covering a one-month period in early 2011. We find that influence between different media types is varied by the context of information. News media are the most influential in the arts and economy categories, while social networking sites (SNS) and blog media are in the politics and culture categories, respectively. Furthermore, controversial topics, such as political protests and multiculturalism failure, tend to spread concurrently across social media, while entertainment topics, such as film releases and celebrities, are more likely driven by interactions within single social platforms. We expect that the proposed model applies to a wider class of diffusion phenomena in diverse fields and that it provides a way of interpreting the dynamics of diffusion in terms of the strength and directionality of influences among populations.
AB - Diverse online social networks are becoming increasingly interconnected by sharing information. Accordingly, emergent macro-level phenomena have been observed, such as the synchronous spread of information across different types of social media. Attempting to analyze the emergent global behavior is impossible from the examination of a single social platform, and dynamic influences between different social networks are not negligible. Furthermore, the underlying structural property of networks is important, as it drives the diffusion process in a stochastic way. In this paper, we propose a macro-level diffusion model with a probabilistic approach by combining both the heterogeneity and structural connectivity of social networks. As real-world phenomena, we explore instances of news diffusion across different social media platforms from a dataset that contains over 386 million web documents covering a one-month period in early 2011. We find that influence between different media types is varied by the context of information. News media are the most influential in the arts and economy categories, while social networking sites (SNS) and blog media are in the politics and culture categories, respectively. Furthermore, controversial topics, such as political protests and multiculturalism failure, tend to spread concurrently across social media, while entertainment topics, such as film releases and celebrities, are more likely driven by interactions within single social platforms. We expect that the proposed model applies to a wider class of diffusion phenomena in diverse fields and that it provides a way of interpreting the dynamics of diffusion in terms of the strength and directionality of influences among populations.
KW - Dynamic influence
KW - Macro-level diffusion
KW - Meta-populations
KW - Social media
UR - http://www.scopus.com/inward/record.url?scp=84920565344&partnerID=8YFLogxK
U2 - 10.3390/e15104215
DO - 10.3390/e15104215
M3 - Article
SN - 1099-4300
VL - 15
SP - 4215
EP - 4242
JO - Entropy
JF - Entropy
IS - 10
ER -