Abstract
Multivariate spatial-statistical models are often used when modeling environmental and socio-demographic processes. The most commonly used models for multivariate spatial covariances assume both stationarity and symmetry for the cross-covariances, but these assumptions are rarely tenable in practice. In this article, we introduce a new and highly flexible class of nonstationary and asymmetric multivariate spatial covariance models that are constructed by modeling the simpler and more familiar stationary and symmetric multivariate covariances on a warped domain. Inspired by recent developments in the univariate case, we propose modeling the warping function as a composition of a number of simple injective warping functions in a deep-learning framework. Importantly, covariance-model validity is guaranteed by construction. We establish the types of warpings that allow for cross-covariance symmetry and asymmetry, and we use likelihood-based methods for inference that are computationally efficient. The utility of this new class of models is shown through two data illustrations: a simulation study on nonstationary data, and an application to ocean temperatures at two different depths.
Original language | English |
---|---|
Pages (from-to) | 2071-2093 |
Number of pages | 23 |
Journal | Statistica Sinica |
Volume | 32 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2022 |
Externally published | Yes |