Module structure of the free Lie ring on three generators

L. G. Kovács*, Ralph Stöhr

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    Let Ln denote the homogeneous component of degree n in the free Lie ring on three generators, viewed as a module for the symmetric group S3 of all permutations of those generators. This paper gives a Krull-Schmidt Theorem for the Ln: if n > 1 and Ln is written as a direct sum of indecomposable submodules, then the summands come from four isomorphism classes, and explicit formulas for the number of summands from each isomorphism class show that these multiplicities are independent of the decomposition chosen. A similar result for the free Lie ring on two generators was implicit in a recent paper of R. M. Bryant and the second author. That work, and its continuation on free Lie algebras of prime rank p over fields of characteristic p, provide the critical tools here. The proof also makes use of the identification of the isomorphism types of ℤ-free indecomposable ℤS3-modules due to M. P. Lee. (There are, in all, ten such isomorphism types, and in general there is no Krull-Schmidt Theorem for their direct sums.).

    Original languageEnglish
    Pages (from-to)182-185
    Number of pages4
    JournalArchiv der Mathematik
    Volume73
    Issue number3
    DOIs
    Publication statusPublished - 1999

    Fingerprint

    Dive into the research topics of 'Module structure of the free Lie ring on three generators'. Together they form a unique fingerprint.

    Cite this