Molecular mechanisms of hydrophobic transitions

V. V. Yaminsky*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    24 Citations (Scopus)

    Abstract

    This review article provides new insights into the molecular mechanisms of hydrophobicity that emerge within the phenomenological framework of classical capillarity. The thermodynamic analysis of surface phenomena via the Gibbs adsorption equation that forms the basis of the experimental physical chemistry of liquid-fluid interfaces extends with its rigorous implications towards the wetting of solid surfaces. Observations on equilibrium contact angles, contact angle hysteresis, and the dynamics of wetting hitherto based on qualitative results that received fragmentary and eclectic interpretations are accounted for in terms of the values of adsorption pressures that act at the three-phase line. Hydrophobic surfaces and hydrophobic transitions induced by reversible solute adsorption qualify as two distinct limiting cases in this thermodynamic context. The equilibrium and kinetic aspects of the wetting of uniform and chemically heterogeneous surfaces by pure liquids and surfactant solutions is discussed with reference to reversible liquid-fluid interfaces. The importance of the solvent and solute adsorption at the solid-vapor interface for proper assessment of static and dynamic dewetting transitions is particularly addressed.

    Original languageEnglish
    Pages (from-to)187-233
    Number of pages47
    JournalJournal of Adhesion Science and Technology
    Volume14
    Issue number2
    DOIs
    Publication statusPublished - 2000

    Fingerprint

    Dive into the research topics of 'Molecular mechanisms of hydrophobic transitions'. Together they form a unique fingerprint.

    Cite this