MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries

Tao Tao, Alexey M. Glushenkov, Chaofeng Zhang, Hongzhou Zhang, Dan Zhou, Zaiping Guo, Hua Kun Liu, Qiyuan Chen, Huiping Hu, Ying Chen

Research output: Contribution to journalArticlepeer-review

128 Citations (Scopus)

Abstract

A MoO3-carbon nanocomposite was synthesized from a mixture of MoO3 and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO3 particles (2-180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical capacity of 745 mA h g-1 in a mixture of MoO3 and graphite (1:1 by weight), and the stable capacity of 700 mA h g-1 (94% of the theoretical capacity) is still retained after 120 cycles. The electrode performance is linked with the unique nanoarchitecture of the composite and is compared with the performance of MoO3-based anode materials reported in the literature previously (nanoparticles, ball milled powders, and carbon-coated nanobelts). The high value of capacity and good cyclic stability of MoO 3-carbon nanocomposite are attractive in respect to those of the reported MoO3 electrodes.

Original languageEnglish
Pages (from-to)9350-9355
Number of pages6
JournalJournal of Materials Chemistry
Volume21
Issue number25
DOIs
Publication statusPublished - 7 Jul 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries'. Together they form a unique fingerprint.

Cite this