TY - JOUR
T1 - Morphology of temperate bacteriophage SfV and characterisation of the DNA packaging and capsid genes
T2 - The structural genes evolved from two different phage families
AU - Allison, Gwen E.
AU - Angeles, Dario C.
AU - Thi Huan, Pham
AU - Verma, Naresh K.
PY - 2003/3/30
Y1 - 2003/3/30
N2 - The entire genome of SfV, a temperate serotype-converting bacteriophage of Shigella flexneri, has recently been sequenced (Allison, G.E., Angeles, D., Tran-Dinh, N., Verma, N.K. 2002, J. Bacteriol. 184, 1974-1987). Based on the sequence analysis, we further characterised the SfV virion structure and morphogenesis. Electron microscopy indicated that SfV belongs to the Myoviridae morphology family. Analysis of the proteins encoded by orf1, orf2, and orf3 revealed that they were homologous to small and large terminase subunits, and portal proteins, respectively; the protein encoded by orf5 showed homology to capsid proteins. Western immunoblot of the phage with anti-SfV sera revealed two antigenic proteins, and the N-terminal amino acid sequence of the 32-kDa protein corresponded to amino acids 116 to 125 of the ORF5 protein, suggesting that the capsid may be processed. Functional analysis of orf4 showed that it encodes the phage capsid protease. The proteins encoded by orfs1, 2, 3, 4, and 5 are homologous to similar proteins in the Siphoviridae phage family of both gram-positive and gram-negative origin. The capsid and morphogenesis genes are upstream and adjacent to the genes encoding Myoviridae (Mu-like) tail proteins. The organisation of the structural genes of SfV is therefore unique as the head and tail genes originate from different morphology groups.
AB - The entire genome of SfV, a temperate serotype-converting bacteriophage of Shigella flexneri, has recently been sequenced (Allison, G.E., Angeles, D., Tran-Dinh, N., Verma, N.K. 2002, J. Bacteriol. 184, 1974-1987). Based on the sequence analysis, we further characterised the SfV virion structure and morphogenesis. Electron microscopy indicated that SfV belongs to the Myoviridae morphology family. Analysis of the proteins encoded by orf1, orf2, and orf3 revealed that they were homologous to small and large terminase subunits, and portal proteins, respectively; the protein encoded by orf5 showed homology to capsid proteins. Western immunoblot of the phage with anti-SfV sera revealed two antigenic proteins, and the N-terminal amino acid sequence of the 32-kDa protein corresponded to amino acids 116 to 125 of the ORF5 protein, suggesting that the capsid may be processed. Functional analysis of orf4 showed that it encodes the phage capsid protease. The proteins encoded by orfs1, 2, 3, 4, and 5 are homologous to similar proteins in the Siphoviridae phage family of both gram-positive and gram-negative origin. The capsid and morphogenesis genes are upstream and adjacent to the genes encoding Myoviridae (Mu-like) tail proteins. The organisation of the structural genes of SfV is therefore unique as the head and tail genes originate from different morphology groups.
KW - Capsid
KW - Myoviridae
KW - Protease
KW - Shigella flexneri
KW - Siphoviridae
KW - Temperate bacteriophage
KW - Terminase
UR - http://www.scopus.com/inward/record.url?scp=0037473343&partnerID=8YFLogxK
U2 - 10.1016/S0042-6822(03)00198-3
DO - 10.1016/S0042-6822(03)00198-3
M3 - Article
SN - 0042-6822
VL - 308
SP - 114
EP - 127
JO - Virology
JF - Virology
IS - 1
ER -