TY - JOUR
T1 - Multi-dimensional simulations of the expanding supernova remnant of SN 1987A
AU - Potter, T. M.
AU - Staveley-Smith, L.
AU - Reville, B.
AU - Ng, C. Y.
AU - Bicknell, G. V.
AU - Sutherland, R. S.
AU - Wagner, A. Y.
N1 - Publisher Copyright:
© 2014. The American Astronomical Society. All rights reserved.
PY - 2014
Y1 - 2014
N2 - The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0″.43-0″.51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0″.63 ± 0″.01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.
AB - The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0″.43-0″.51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0″.63 ± 0″.01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.
KW - Acceleration of particles
KW - Hydrodynamics
KW - ISM: supernova remnants
KW - Radio continuum: general
KW - Supernovae: individual (SN 1987A)
UR - http://www.scopus.com/inward/record.url?scp=84920263491&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/794/2/174
DO - 10.1088/0004-637X/794/2/174
M3 - Article
SN - 0004-637X
VL - 794
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 174
ER -