Multiconjugate Adaptive Optics for Astronomy

François Rigaut, Benoit Neichel

    Research output: Contribution to journalReview articlepeer-review

    47 Citations (Scopus)

    Abstract

    Since the year 2000, adaptive optics (AO) has seen the emergence of a variety of new concepts addressing particular science needs; multiconjugate adaptive optics (MCAO) is one of them. By correcting the atmospheric turbulence in 3D using several wavefront sensors and a tomographic phase reconstruction approach, MCAO aims to provide uniform diffraction limited images in the near-infrared over fields of view larger than 1 arcmin 2, i.e., 10 to 20 times larger in area than classical single conjugated AO. In this review, we give a brief reminder of the AO principles and limitations, and then focus on aspects particular to MCAO, such as tomography and specific MCAO error sources. We present examples and results from past or current systems: MAD (Multiconjugate Adaptive Optics Demonstrator) and GeMS (Gemini MCAO System) for nighttime astronomy and the AO system, at Big Bear for solar astronomy. We examine MCAO performance (Strehl ratio up to 40% in H band and full width at half maximum down to 52 mas in the case of MCAO), with a particular focus on photometric and astrometric accuracy, and conclude with considerations on the future of MCAO in the Extremely Large Telescope and post-HST era.

    Original languageEnglish
    Pages (from-to)277-314
    Number of pages38
    JournalAnnual Review of Astronomy and Astrophysics
    Volume56
    DOIs
    Publication statusPublished - 14 Sept 2018

    Fingerprint

    Dive into the research topics of 'Multiconjugate Adaptive Optics for Astronomy'. Together they form a unique fingerprint.

    Cite this